

SIDDHARTH GROUP OF INSTITUTIONS :: PUTTUR Siddharth Nagar, Narayanawanam Road – 517583

QUESTION BANK (DESCRIPTIVE)

Subject with Code : Electronic Circuit Analysis (16EC407)	Course & Branch: B.Tech - ECE
Year & Sem: II-B.Tech & II-Sem	Regulation: R16

UNIT –I

SMALL SIGNAL LOW FREQUENCY TRANSISTOR AMPLIFIER ANALYSIS

1. a) Why hybrid model is used for the analysis of BJT amplifier at low frequencies? Draw the	
hybrid model for CE transistor and derive the parameters.	[6M]
b) Compare the CE, CB and CC transistor amplifier parameters.	[6M]
2. Using low frequency h-parameter model, derive the expressions for voltage gain, current gain,	,
input impedance and output admittance for a BJT Amplifier in CE configuration.	[12M]
3. a) With neat diagram, derive the CE amplifier parameters using approximate analysis.	[6M]
b) Obtain the expressions for current gain, voltage gain, input impedance and output impedance	e
of CB amplifier using simplified hybrid model.	[6M]
4. a) Determine the parameters A_i , R_i , A_v and R_0 of Emitter Follower using simplified hybrid mo	del
analysis.	[6M]
b) A voltage source of internal resistance $R_s = 900\Omega$ drives a CC amplifier using load resistance	ce
R_L =2000 Ω . The CE h parameters are h_{fe} =60, h_{ie} =1200 Ω , h_{oe} = 25 μ A/V and h_{re} = 2 x 10 ⁻⁴ .	
Compute A_i , R_i , A_v and R_0 using approximate analysis.	[6M]
5. A CE amplifier is driven by a voltage source of internal resistance $R_s = 800\Omega$ and the load	
impedance of R_L =1000 Ω . The h-parameters are h_{ie} =1k, h_{fe} =50, h_{oe} = 25 μ A/V and h_{re} = 2 x 10 ⁻	⁴ .
Calculate current gain, voltage gain, input impedance and output impedance using exact	
analysis and approximate analysis.	[12M]
6. Consider a single stage CE amplifier with $R_s = 1k\Omega$, $R_1 = 50k\Omega$, $R_2 = 2k\Omega$, $R_c = 1k\Omega$, $R_L =$	
1.2k Ω , h_{fe} =50, h_{ie} =1.1k, h_{oe} = 25 μ A/V and h_{re} = 2.5 x 10 ⁻⁴ , as shown in Fig. Find A _i , R _i , A _v , A	vs,
A_{IS} and R_0 .	[12M]

- 7. a) Obtain the expression for current gain, voltage gain, input impedance and output impedanceFor Common Emitter Amplifier with Emitter Resistor. [6M]
 - b) A CE amplifier is driven by a voltage source of internal resistance $R_s = 1000\Omega$ and the load impedance of $R_C=2k\Omega$. The h-parameters are $h_{ie}=1.3k$, $h_{fe}=55$, $h_{oe}=22\mu A/V$ and $h_{re}=2 \times 10^{-4}$. Neglecting biasing resistors, compute current gain, voltage gain, input impedance, output impedance for the value of Emitter Resistor $R_E = 200\Omega$ inserted in the emitter circuit. [6M]
- 8. a) Draw the circuit diagram of a single stage RC coupled Amplifier and discuss the steps used for designing it.[6M]
 - b) Determine Voltage Gain, Current Gain, Input resistance and Output resistance for a CE amplifier using NPN transistor with $h_{ie} = 1200\Omega$, $h_{re} = 0$, $h_{fe} = 36$ and $h_{oe} = 2 \times 10^{-6}$ mhos, $R_L = 2.5k\Omega$ and $R_S = 500\Omega$ (neglect the effect of biasing circuit). [6M]
- 9. Design a single stage RC coupled BJT amplifier for the following values. Assume that for Silicon transistor, $V_{cc} = 10V$, $I_c = 4mA$, $h_{fe} = 100$, $h_{ie} = 1k\Omega$, $R_L = 100k\Omega$ and $f_L = 100Hz$. [12M]
- 10. a) Draw the circuit diagram of JFET Common Source amplifier with voltage divider bias for bypassed R_s and determine the expression for input impedance, output impedance and voltage gain.
 - b) Derive input impedance, output impedance and voltage gain of JFET Common Drain amplifier with neat diagram.[6M]

UNIT –II

SMALL SIGNAL HIGH FREQUENCY TRANSISTOR AMPLIFIER ANALYSIS

. ..

1. a) Draw the Hybrid-pi model and explain the significance of each and every component in it.	[6M]
b) Derive the expression for Hybrid- π capacitance of CE transistor at high frequency.	[6M]
2. Derive the expressions for the hybrid π parameters g_m , $g_{b'e}$, $g_{b'c}$, $r_{bb'}$ and g_{ce} .	[12M]
3. a) Mention the typical values of Hybrid- π parameters.	[6M]
b) A BJT $g_m = 38m$, $r_{b'e} = 5.9$ k Ω , $h_{ie} = 6$ k Ω , $r_{bb'} = 100$ Ω , $C_{b'c} = 12$ pF, $C_{b'e} = 63$ pF and $h_{fe} = 6$	
224 at 1 kHz. Calculate f_{α} , f_{β} and f_T cutoff frequencies.	[6M]
4. With the help of necessary circuit diagrams and approximations obtain the expression for CE	
Short circuit current gain and derive the relation between f_{β} and f_{T} .	[12M]
5. a) Discuss the dependency of hybrid-pi parameters upon collector current, V_{CE} and Temperatu	re. [6M]
b) A BJT has the following parameters measured at $I_c=1mA$, $h_{ie}=3k\Omega$, $h_{fe}=100$, $C_c=2pF$	
and $C_e=18 pF$. Find g_{m} , $r_{b'e}$, and $r_{bb'}$ for $R_L=1 K\Omega$.	[6M]
6. a) At $I_c = 1$ mA and $V_{CE}=10V$, a certain transistor data shows $C_c = C_{b'c} = 3$ pF, $h_{fe} = 200$ and	
$w_T = -500 \text{ M rad/sec. Calculate } g_m$, $r_{b'e}$, $C_e = C_{b'e}$ and w_β .	[10M]
b) Define Unity Gain Frequency f _T .	[2M]
7. Obtain the expression for Current gain with load resistor and explain the variation of frequence	у
Response with R _L .	[12M]
8. a) Short circuit CE current gain of a transistor is 25 at a frequency of 2MHz. If $f_{\beta} = 200 \text{KHz}$	
Calculate (i) f_T (ii) h_{fe} (iii) Find $ A_i $ at frequency of 10MHz and 100MHz.	[6M]
b) Derive the expression for cut off frequencies f_{α} , f_{β} and f_{T} .	[6M]
9. a) Describe the relationship between low frequency h-parameters and high frequency	
Parameters.	[8M]
b) Write about Collector junction capacitance and Emitter junction capacitance of	
hybrid-pi model.	[4M]
10. A transistor has $h_{ie} = 6k\Omega$ and $h_{fe} = 224$ at $I_C = 1mA$, with $f_T = 80MHz$ and $C_{b'c} = 12pF$.	
Determine g_m , $r_{b'e}$, $r_{bb'}$ and $C_{b'e}$ at room temperature.	[12M]

UNIT –III MULTISTAGE AMPLIFIERS

1. (a) Explain the classification of amplifiers.	[6M]
(b) Discuss the need of cascading amplifiers.	[6M]
2. Describe different methods used for coupling multistage amplifiers with their frequency	
response.	[12M]
3. Draw the block diagram of n-stage cascaded amplifier and analyze its various parameters.	[12M]
4. Analyze Two stage RC coupled amplifier with neat diagrams.	[12M]
5. With neat diagram explain cascode amplifier and derive the overall voltage gain of cascode	
amplifier.	[12M]
6. a) What is Darlington Connection? Mention the advantages of Darlington Pair Amplifier.[4M]	
b) With diagram, derive the expression for current gain and input resistance of Darlington	
amplifier.	[8M]
7. Explain how the input impedance is increased by Bootstrap Emitter Follower with neat	
diagram.	[12M]
8. a) Explain the effect of cascading of amplifiers on bandwidth.	[6M]
b) An amplifier consists of 3 identical stages in cascade, the bandwidth of overall amplifier	
extends from 20 Hz to 20 kHz. Calculate the bandwidth of individual stage.	[6M]
9. The following figure shows CE-CE cascade amplifier with their biasing arrangements.	
Calculate R_i , A_i , A_v , R_i , A_{vs} and A_{is} if circuit parameters are: $R_s=1K$, $R_{c1}=15K$, $R_{E1}=100\Omega$,	
$R_{C2} = 4 \text{ K}\Omega$, $R_{E2} = 330\Omega$ with $R_1 = 200$ K and $R_2 = 20$ K for first stage and $R_1 = 47$ K and $R_2 = 100$ K and $R_2 = 100$ K for first stage and $R_1 = 47$ K and $R_2 = 100$ K and $R_2 = 100$ K for first stage and $R_1 = 47$ K and $R_2 = 100$ K for first stage and $R_3 = 1000$ K for first stag	
4.7K for second stage. Assume that $h_{ie} = 1.2k\Omega$, $h_{fe} = 50$, $h_{re} = 2.5 \times 10^{-4}$ and $h_{oe} = 25 \times 10^{-6}$	
A/V.	[12M]
+V _{cc}	

Electronic Circuit Analysis

10. For the circuit shown in Fig. Calculate R_i , A_i , A_V and R_o . $h_{ie}=1.1k$, $h_{fe}=50$, $h_{oe}=25\mu A/V$ and $h_{re}=2.5 \times 10^{-4}$. [12M]

UNIT –IV FEEDBACK AMPLIFIERS AND OSCILLATORS

1. Explain the characteristics of negative feedback amplifiers.	[12M]
2. a) Discuss Feedback topologies.	[6M]
b) An amplifier has an open loop gain of 1000 and a feedback ratio of 0.04. If the open loop	
gain changes by 10% due to temperature, find the percentage change in gain of the amplific	er
with feedback.	[6M]
3. a) Derive the expressions of input and output resistances for Voltage Series FBA.	[6M]
b) Determine the input and output resistances of Current Shunt feedback amplifier.	[6M]
4. a) Derive the expressions of input and output resistances for Voltage Shunt FBA.	[6M]
b) Determine the input and output resistances of Current Series feedback amplifier.	[6M]
5. a) An amplifier has a voltage gain of 400, $f_1 = 50$ Hz, $f_2 = 200$ kHz and a distortion of 10%	
without feedback. Determine the amplifier voltage gain, f_{1f} , f_{2f} and D_f when a negative	
feedback is applied with feedback ratio of 0.01.	[6M]
b) A voltage series negative feedback amplifier has a voltage gain without feedback of $A = 50$	00,
input resistance $R_i = 3k\Omega$, output resistance $R_0 = 20k\Omega$ and feedback ratio $\beta = 0.01$. Calcul	ate
the voltage gain A_f , input resistance R_{if} , and output resistance R_{of} of the amplifier with	
feedback.	[6M]
6. a) State Barkhausen Criterion for oscillations. Explain the principle of operation of	
oscillator.	[6M]
b) Classify the different types of oscillators.	[6M]
Electronic Circuit Analysis	Page 5

QUESTION BANK	2019
7. a) Derive the expression for frequency of oscillations for RC phase shift Oscillator.	[6M]
b) Discuss the working principle of Wein bridge oscillator and derive the expression for	
frequency of oscillations.	[6M]
8. a) With neat diagram, explain Hartley Oscillator and derive the expression for frequency of	of
oscillation.	[6M]
b) Discuss Colpitts Oscillator and obtain the expression for frequency of oscillation.	[6M]
9. a) Give the general analysis of an LC Oscillator.	[6M]
b) Draw the equivalent circuit of a Quartz Crystal and explain its principle of operation wi	ith the
help of neat circuit diagram.	[6M]
10. a) Explain the concept of stability of Oscillators.	[6M]
b) In the Hartley oscillator, $L_2 = 0.4$ mH and $C = 0.004 \mu$ F. If the frequency of the oscillator	or is
120 kHz, find the value of L_1 . Neglect the mutual inductance.	[6M]

UNIT V

POWER AMPLIFIERS & TUNED AMPLIFIERS

- a) With neat diagram explain Series fed, Directly coupled Class A Power Amplifier and derive its maximum efficiency.
 [6M]
 - b) A series fed Class A amplifier shown if the Fig, operates from dc source and applied sinusoidal input signal generates peak base current 9mA. Calculate : (i) Quiescent current I_{CQ}, (ii) Quiescent voltage V_{CEQ}, (iii) DC input power P_{DC}, (iv) AC output power P_{AC} and (v) Efficiency.

 a) Discuss with diagram, Transformer coupled Class A Power Amplifier and derive its Maximum efficiency.

- b) Explain second harmonic distortion by three point method. [6M]
- 3. a) Describe Higher order harmonic distortion by five point method. [6M]
 - b) With neat diagram explain Push Pull Class B Power Amplifier and derive its maximum

Electronic Circuit Analysis

[6M]

[6M]

QUESTION BANK 20	19
efficiency.	[6M]
4. a) Describe Complementary Symmetry Class B Power Amplifier with diagram and write about	
crossover distortion in class B power amplifiers.	[6M]
b) A class B push pull amplifier supplies power to a resistive load of 12Ω . The output	
transformer has a turns ratio of 3:1 and efficiency of 78.5%. Obtain (i) Maximum power	
output, (ii) maximum power dissipation in each transistor and (iii) Maximum base and	
collector current. For each transistor, assume $h_{fe} = 25$ and $V_{CC} = 20V$.	[6M]
5. a) Write notes on Class AB operation.	[6M]
b) Discuss the need of Heat sink for power transistors. Mention about thermal stability of pow	ver
transistors.	[6M]
6. a) Compare Single Tuned and Double Tuned Amplifier.	[2M]
b) Describe the operation of a single tuned capacitive coupled amplifier with diagram and	
derive the expression for its centre frequency, Quality factor, Voltage gain and bandwidth.	[12M]
7. Discuss Double Tuned Amplifier with neat diagram and derive the expression for its	
bandwidth.	[12M]
8. a) Explain the effect of cascading single tuned amplifiers on bandwidth.	[6M]
b) The bandwidth of single tuned amplifier is 20kHz. Calculate the bandwidth if such three	
stages are cascaded. Also calculate the bandwidth for four stages.	[6M]
9. a) With circuit diagram, explain the stagger tuning operation. Give necessary graph.	[6M]
b) Explain the stability considerations of a tuned amplifier.	[6M]
10. a) A single tuned RF amplifier uses a transistor with an output resistance of 50 K Ω , output	
capacitance of 15 pF and internal resistance of next stage is 20 k Ω . The tuned circuit consist	sts
of 47 pF capacitance in parallel with series combination of $1\mu H$ inductance and 2Ω resistant	ce.
Calculate resonant frequency, effective quality factor and bandwidth of the circuit.	[6M]
b) Explain the advantages, disadvantages and applications of Tuned Amplifiers.	[6M]

Prepared by: 1. Dr. P.RATNA KAMALA Professor/ECE 2. Mr M. AFSAR ALI Professor/ECE